7,327 research outputs found

    Compressed sensing for radio interferometric imaging: review and future direction

    Get PDF
    Radio interferometry is a powerful technique for astronomical imaging. The theory of Compressed Sensing (CS) has been applied recently to the ill-posed inverse problem of recovering images from the measurements taken by radio interferometric telescopes. We review novel CS radio interferometric imaging techniques, both at the level of acquisition and reconstruction, and discuss their superior performance relative to traditional approaches. In order to remain as close to the theory of CS as possible, these techniques necessarily consider idealised interferometric configurations. To realise the enhancement in quality provided by these novel techniques on real radio interferometric observations, their extension to realistic interferometric configurations is now of considerable importance. We also chart the future direction of research required to achieve this goal.Comment: 4 pages, 4 figures, Proceedings of IEEE International Conference on Image Processing (ICIP) 201

    On the computation of directional scale-discretized wavelet transforms on the sphere

    Get PDF
    We review scale-discretized wavelets on the sphere, which are directional and allow one to probe oriented structure in data defined on the sphere. Furthermore, scale-discretized wavelets allow in practice the exact synthesis of a signal from its wavelet coefficients. We present exact and efficient algorithms to compute the scale-discretized wavelet transform of band-limited signals on the sphere. These algorithms are implemented in the publicly available S2DW code. We release a new version of S2DW that is parallelized and contains additional code optimizations. Note that scale-discretized wavelets can be viewed as a directional generalization of needlets. Finally, we outline future improvements to the algorithms presented, which can be achieved by exploiting a new sampling theorem on the sphere developed recently by some of the authors.Comment: 13 pages, 3 figures, Proceedings of Wavelets and Sparsity XV, SPIE Optics and Photonics 2013, Code is publicly available at http://www.s2dw.org

    Complex data processing: fast wavelet analysis on the sphere

    Get PDF
    In the general context of complex data processing, this paper reviews a recent practical approach to the continuous wavelet formalism on the sphere. This formalism notably yields a correspondence principle which relates wavelets on the plane and on the sphere. Two fast algorithms are also presented for the analysis of signals on the sphere with steerable wavelets.Comment: 20 pages, 5 figures, JFAA style, paper invited to J. Fourier Anal. and Appli

    Compressed sensing for wide-field radio interferometric imaging

    Full text link
    For the next generation of radio interferometric telescopes it is of paramount importance to incorporate wide field-of-view (WFOV) considerations in interferometric imaging, otherwise the fidelity of reconstructed images will suffer greatly. We extend compressed sensing techniques for interferometric imaging to a WFOV and recover images in the spherical coordinate space in which they naturally live, eliminating any distorting projection. The effectiveness of the spread spectrum phenomenon, highlighted recently by one of the authors, is enhanced when going to a WFOV, while sparsity is promoted by recovering images directly on the sphere. Both of these properties act to improve the quality of reconstructed interferometric images. We quantify the performance of compressed sensing reconstruction techniques through simulations, highlighting the superior reconstruction quality achieved by recovering interferometric images directly on the sphere rather than the plane.Comment: 15 pages, 8 figures, replaced to match version accepted by MNRA

    S2LET: A code to perform fast wavelet analysis on the sphere

    Get PDF
    We describe S2LET, a fast and robust implementation of the scale-discretised wavelet transform on the sphere. Wavelets are constructed through a tiling of the harmonic line and can be used to probe spatially localised, scale-depended features of signals on the sphere. The scale-discretised wavelet transform was developed previously and reduces to the needlet transform in the axisymmetric case. The reconstruction of a signal from its wavelets coefficients is made exact here through the use of a sampling theorem on the sphere. Moreover, a multiresolution algorithm is presented to capture all information of each wavelet scale in the minimal number of samples on the sphere. In addition S2LET supports the HEALPix pixelisation scheme, in which case the transform is not exact but nevertheless achieves good numerical accuracy. The core routines of S2LET are written in C and have interfaces in Matlab, IDL and Java. Real signals can be written to and read from FITS files and plotted as Mollweide projections. The S2LET code is made publicly available, is extensively documented, and ships with several examples in the four languages supported. At present the code is restricted to axisymmetric wavelets but will be extended to directional, steerable wavelets in a future release.Comment: 8 pages, 6 figures, version accepted for publication in A&A. Code is publicly available from http://www.s2let.or
    • …
    corecore